Project Title:

“Finding the Battleships”

Supercomputing Challenge
New Mexico
Final Report

April 3, 2019

Team #87

Media Arts Collaborate Charter School

Team Member(s):

Seungbin Chung

Teacher:

Creighton Edington

Project Mentors:
Creighton Edington

Geoff Danielson

Acknowledgements:

I would like to acknowledge the following for people for assisting and supporting me throughout
this project:

Creighton Edington: For teaching me the basics of how this project is done and for guiding me

throughout most of this project

Geoff Danielson: For helping me with figuring out the logic of one of the most crucial search

patterns and for mentoring me.

Table of Contents:

Introduction — 4

Materials and Methods - 4

How Battleship is played — 5, 6

Shot Patterns and Code — 6 — 15

Data Results — 15 - 17

Conclusion - 17

Bibliography — 18

Introduction

We search for things every day. Whether it’s on the internet or whether we’re looking
for something that’s missing or hidden, these things are always a part of our everyday lives.
Searching can apply to anything in a serious or fun matter. However, each search method has a
different approach regarding the situation. Say we use the game, Battleship. How can we
optimize a search pattern to figure out what is the most efficient way at finding ships? From what

set of search methods can we use to compare and determine what has the highest hit rate?

To search further into the question, I recreated the game Battleship using Netlogo. There
were two methods | used to compare data: one with spacing between the ships, and one with no
spacing. | also conducted this experiment using three search pattern methods to find out which of

the three are the most efficient at finding the battleships.

Materials and Methods:
To research this problem, | used 3 steps into solving the problem:
1. Creating a program that plays the game
2. Creating an Ai (artificial intelligence) which plays the game
3. Figuring out what is the most efficient search pattern.

| did this experiment with the program, Netlogo using “BehaviorSpace” for my trial.

How Battleship is played:

There is a total of five ships: the carrier, battleship, cruiser, submarine, and destroyer. Each have
their own unique sizes from carrier which is the largest taking five tiles of space and the destroyer which

is the smallest taking two tiles of space. The ships and the number of spaces is listed below (data 1):

Ship: Number of spaces:
Carrier 5
Battleship 4
Cruiser 3
Submarine 3
Destroyer 2

(Data of ships and sizes in Battleship) (data 1)

The players place their ships down on a 10x10 grid and then take turns at guessing the coordinates of
their enemy ship. The main objective of the game is to sink all enemy ships. Each player has a chance of

either hitting a ship or missing a ship. Down below is an example of the layout of the game:

1L

Image fetched from: https://www.wikihow.com/images/a/a9/Play-Battleship-Step-15-Version-2.jpg

https://www.wikihow.com/images/a/a9/Play-Battleship-Step-15-Version-2.jpg

The coordinates are laid out from A-J and 1-10. Let’s say for example a player calls out the
coordinates A4. If a ship is there, the player will call out hit, if a ship is not there then the player will call

out miss. The players will place a marker usually red for hit and white for miss, to indicate whether the

ship was hit or not.
Shot Patterns and Code

By using Netlogo, | recreated Battleship and created the program to play the game. The

screenshot below is what my current game looks like:

Shots
[v]

setup

Precision

shoot
(=) NjA

Ui

Hits
o

two-shats
[v]

three-shats
[v]

five-shats
[v]

(For this research, | mainly used the spaced out version to conduct my experiment.)

The following below are screenshots of the code for the search pattern algorithms:

to target-random-patch
ask patch random-pxcor random-pycor ;looks somewhere random insid

[
ifelse (pcolor = blue + 2 or pcolor = black) ;if patch color is
[
ifelse (ship-here = 1} ;If there is a ship at the location (b
[
set pcolor red
zet shots-fired shots-fired + 1
set hits hits + 1 ;this is the counter for the number of sh
set last-hit-pxcor [pxcor] of patch-at @ @
set last-hit-pycor [pycor] of patch-at @ @
set last-shot? 1
set global-targeting-sequence global-targeting-sequence + 1
set targeting-sequence global-targeting-sequence
]
[
set pcolor white ;sets patch color to white (blue + 2)
zet shots-fired shots-fired + 1
]
]
[
shoot ;re-calls the shoot function command
]
]
end

(Random shot pattern above) (image 1)

to shot-pattern-two ;this is the shot function for finding pt-boat
set search-pxcor search-pxcor + 2 ;increment pxcor by 2 spaces in

if search-

[

pxcor > 1@

set search-pxcor search-pxcor - 11 ; resets search-pxcor back to
set search-pycor search-pycor + 1 ; increments pycor up one row

]
ask patch

[

search-pxcor search-pycor

ifelse (pcolor = blue + 2 or pcolor = black) ;if patch color is

[

ifelse (ship-here = 1) ;If there is a ship at the location (bl

[

set
set
set
set
set
set
set
set
set

set
set
set

end

pcolor red

shots-fired shots-fired + 1

hits hits + 1 ;this is the counter for the number of shi
last-hit-pxcor [pxcor] of patch-at @ @ ;records the last
last-hit-pycor [pycor] of patch-at @ @ ;records the last
last-shot? 1 ;sets the previous/current shot that hit th
global-targeting-sequence global-targeting-sequence + 1
targeting-sequence global-targeting-sequence ;this is th
two-shots two-shots + 1 ;this is the counter for the pat

pcolor white ;sets patch color to white (blue + 2)
shots-fired shots-fired + 1
two-shots two-shots + 1 ;this is the counter for the pat

+n chat_nattaorn_throaa cthic 10 +tha chat Functinn Far Findima ook amd

(Algorithm for both pt-boat and carrier) (image 2)

to shot-pattern-three ;this is the shot function for finding sub and
set search-pxcor search-pxcor + 3 ; increment pxcor by 2 spaces in
if search-pxcor > 18
[
set search-pxcor search-pxcor - 11 ; resets search-pxcor back to
set search-pycor search-pycor + 1 ; increments pycor up one row
1
ask patch search-pxcor search-pycor
[
ifelse (pcoler = blue + 2 or pcolor = black) ;if patch color is
[
ifelse (ship-here = 1} ;If there is a ship at the leocation (bl
[
set pcolor red
set shots-fired shots-fired + 1
set hits hits + 1 ;this is the counter for the number of shi
set last-hit-pxcor [pxcor] of patch-at @ @ jrecords the last
set last-hit-pycor [pycor] of patch-at @ @ ;records the last
set last-shot? 1 ;sets the previcus/current shot that hit th
set glebal-targeting-sequence global-targeting-sequence + 1
set targeting-sequence global-targeting-sequence ;this is th
set three-shots three-shots + 1 ;this is the counter for the

set pcolor white ;sets patch color to white (blue + 2)
set shots-fired shots-fired + 1 ;shot counter
set three-shots three-shots + 1 ;this is the counter for the
1
]
[
shoot
1
if (three-shots = 28) ;if the counter reaches 28, then it will s
[
set shot-3 @ ;this stops the 3 shot search pattern
set shot-2 1 ;this initializes the 2 shot search pattern
]
1

end

(One of the shot pattern algorithms for carrier) (Image 3)

to shot-pattern-five ;this is the shot functien for finding carrier
set search-pxcor search-pxcor + 5 ; increment pxcor by 5 spaces in

if search-

[

pxcor > 1@

set search-pxcor search-pxcor - 11 ; resets search-pxcor back to
set search-pycor search-pycor + 1 ; increments pycor up one row

search-pxcor search-pycor

ifelse (pcolor = blue + 2 or pcolor = black) ;if patch coler is

ifelse (ship-here = 1} ;If there is a ship at the lecation (b1

pcolor red ;sets coleor to red (if it hit)

shots-fired shots-fired + 1 ;shot counter

hits hits + 1 ;this is the counter for the number of shi
last-hit-pxcor [pxcor] of patch-at @ @ ;records the last
last-hit-pycor [pycor] of patch-at @ @ ;records the last
last-shot? 1 ;sets the previcgus/current shot that hit th
global-targeting-sequence global-targeting-sequence = 1
targeting-sequence global-targeting-sequence ;this is th
five-shots five-shots + 1 ;this is the counter for the p

pcolor white jsets patch color to white (blue + 2) (if 1
shots-fired shots-fired + 1 ;shot counter
five-shots five-shots + 1 ;this is the counter for the p

if (five-shots = 28) ;if the counter reaches 28, then it will st

set shot-5 @ ;this stops the 5 shot search pattern
set shot-3 1 ;this initializes the 3 shot search pattern

1
ask patch
[
[
[
set
set
set
set
set
set
set
set
set
1
[
set
set
set
1
]
[
shoot
]
[
]
1
end

Information®*: These are the main algorithms that go into the three shot patterns. The random

shot pattern will fire wildly until it hits something. The pt-boat shot pattern skips every other tile and

(Main shot pattern for carrier above) (image 4)

shoots (see image 6 below). The carrier shot pattern switches from 5 tiles, to 3 tiles, then to 2 tiles. The

carrier will skip 5 tiles until it hits the very top of the board, then will do the same to 3, and then finally

will finish off with 2 tiles. Below are examples of the pt-boat and the carrier shot pattern being used

without the ships. Screenshots in respective order: pt-boat, carrier, and carrier (afterwards)

10

Shots
=0

Precision

bwo-shots
50

three-shots
Ju]

five-shots
Ju]

Shots
21

Precision

two-shots
0

three-shots
1

five-shots
20

(Shot pattern for carrier five-shots first above) (image 6)

11

Shots
&l

setup

Precision

two-shots
21

three-shots
20

five-shaots
20

(Shot pattern for carrier, full shot pattern above) (image 7)

Note: Carrier switches patterns from skipping every 5 tiles when the five-shots indicator hits 20,
to 3, then to two (see image 6 and 7 above). The algorithm all these patterns also have is a ship searcher
where if a ship gets hit, it searches around the 4 tiles right next to the hit spot. If it does find a ship, it
keeps moving on trying to look for more in the vicinity. If it doesn’t find another ship, then it will resume

its original search pattern (See image 10 below). Down below are screen shots of the code and an

example of its usage:

12

;this function searches arcund the ship if a ship has been hit

to next-shot
let target-heading @ ;target heading is the area arcund the ship
while[target-heading < 268];loop breaker for when a ship has been searche

[
ask patch last-hit-pxcor last-hit-pycor

[
dask neighbors4 ;this asks the neighboring four patches around the shi
[
if (pcolor = blue + 2 or pcolor = black)
[
ifelse (ship-here = 1}
[
set pcolor red ;turns the tile to red if the ship 1s there
set shots-fired shots-fired + 1 ;shot counter
set hits hits + 1 ;hit counter
set glebal-targeting-sequence global-targeting-sequence + 1
set targeting-sequence global-targeting-sequence ;the target!
set last-shot? 1 ;sets last shot shit was hit to true

set pcolor white ;if it missed, then sets color to white
set shots-fired shots-fired + 1 ;shot counter
]
]
]

1
set target-heading target-heading + 9@ ;this is the function that ro

if hits = 17 ;placed a stop because I noticed that it seemed to ignore
[
stop
1
1

ask patch last-hit-pxcor last-hit-pycor ;this stores the last x cocordinai

[

set targeting-sequence & ;resets the targeting segquence after it confir

(Part 1 for algorithm searching around ships when ship is hit) (image 8)

13

ask patch last-hit-pxceor last-hit-pycor ;this stores the
[

set targeting-sequence & ;ressts the targeting seguenc

1
scheck-next-target checks for any ships with a targeting

ifelse{count patches with [targeting-sequence > 2] » @)
[
let x-stepper 1 ;;the x-stepper and the y-stepper are
let y-stepper &
while[y-stepper ¢ 18] ;;This runs a loop while the y-s

[
ask patch x-stepper y-stepper
[
if(targeting-sequence != @) ;if a ship has been tar
[
set last-hit-pxcor [pxcor] of patch-at @ @ ;records
set last-hit-pycor [pycor] of patch-at @ @ ;records
set y-stepper 12
]
]
set x-stepper x-stepper + 1 ;:;adds a value to the pa
if(x-stepper = 11} ;;if the parameter value (x} is 1
[
set x-stepper 1;;resets the parameter (x)} value to
set y-stepper y-stepper + 1 ;;adds to the parameter
]
]
]
[
set last-shot? @
]
end

(Part 2 for algorithm searching around ships when ship is hit) (image 9)

14

Precision
21.05

Hits

twio-shots
o]

three-shots
Ju]

five-shots
7

(Example of next-shot being used) (image 10)

Information*: The way the next shot pattern works is it assigns the hit ship a value. The function
| used to describe this method is called the targeting-sequence. It’ll look around until it has searched all
4 tiles next to it and then reset the value to 0, meaning it won’t look around there anymore. After that,
it’ll assign another value if a tile hit was also part of the ship. If there are no more ships to be found after

that, all values will be reset to 0 and then it’ll return to its regular shoot pattern.

Data Results:

Using BehaviorSpace allowed me to run 1000 times and record it down on an excel sheet. By
doing this, | took the data given, and averaged the results of the precision of all runs for each pattern. |
did this for two of my versions: the spaced and the non-spaced version. Down below is a data table of
the averages and the standard deviation of both versions. (See data table 2 and 3 below)

Note: Standard deviation was used to determine which shot pattern was the most consistent.

15

Shot Patterns:

Carrier

Pt-boat

Random

Shot Patterns:

Carrier

Pt-boat

Random

Spaced Data Table:

Trial #1

Average: 24.47904

Standard deviation:
2.534173339
Average: 23.99062

Standard deviation:
1.610049588
Average: 23.15354

Standard deviation:
3.128043722

Trial #2

Average: 24.57789

Standard deviation:

2.549550481
Average: 24.13793

Standard deviation:

1.607781445
Average: 22.97259

Standard deviation:

3.116011059

(Spaced data table) (data 2)

Non-Spaced Data Table:

Trial #1

Trial #2

Trial #3

Average: 24.24046

Standard deviation:
2.543882727
Average: 24.06614

Standard deviation:
1.626902121
Average: 22.97422

Standard deviation:
2.998121332

Trial #3

Average: 27.78826

Standard Deviation:

4.636896

Average: 26.31623

Standard Deviation:

3.081075

Average: 27.1237

Standard Deviation:

5.683653

Average: 28.00133

Standard Deviation:

4.830557

Average: 26.24216

Standard Deviation:

3.082028

Average: 26.76697

Standard Deviation:

5.494594

(Non-spaced data table) (data 3)

Average: 28.23691
Standard Deviation:
4.878385
Average: 26.28924
Standard Deviation:
3.035912
Average: 26.18048
Standard Deviation:

5.175764

The result of the data shown above is interesting, because we can see a significance between
spaced and non-spaced in terms of both average and standard deviation. Since spaced is harder to track
down, it has less of an average in terms of precision (see data 2 above). Non-spaced on the other hand
has possibilities of making ships easier to find which causes the average to go up (see data 3 above).
What surprised me the most about the results was the non-spaced where pt-boat was the least precise
between the carrier and the random shot patterns (data 3). The carrier on both data sets was the most
effective one, and the second most consistent compared to the pt-boat which had the lowest standard
deviation in both sets of data. Even though there were more methods to solve this by, | chose the most

common methods used by people to see how effective the comparison might be.

Conclusion

In conclusion, | was able to determine from the three sets of search patterns, that the carrier
had the most effective way of searching for hidden battleships. This was a surprising result, as | expected
the pt-boat method to be the most effective since it was the most consistent search pattern. | believe
that the carrier may have had the edge because it’s wide range of search made it easier to cover spots
that were less examined, and the way the code was set up, from skipping from 5 to 3 to 2 was the

fastest way to get all the ships.

17

Bibliography

Pattern Search (Optimization), Wikipedia, February 7%, 2019

(https://en.wikipedia.org/wiki/Pattern search (optimization))

Tips how to win battleship, UltraBattleship

(http://www.ultrabattleship.com/tips.php)

Search Algorithm, Wikipedia, April 1%, 2019

https://en.wikipedia.org/wiki/Search algorithm

Battleship, DataGenetics

http://www.datagenetics.com/blog/december32011/

18

https://en.wikipedia.org/wiki/Pattern_search_(optimization)
http://www.ultrabattleship.com/tips.php
https://en.wikipedia.org/wiki/Search_algorithm
http://www.datagenetics.com/blog/december32011/

